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Abstract Relativistic generalisations of the harmonic
oscillator are analysed. Lévy–Leblond, Dirac and Klein–
Gordon equations which in the limit of a non-relativistic and
spinless particle transform into Schrödinger equation for the
harmonic oscillator are constructed. Properties of their solu-
tions, in particular the structure of their spectra, are analysed.
Applications to modelling phenomena relevant in quantum
chemistry are briefly discussed.

Keywords Harmonic oscillator · Schrödinger equation ·
Klein–Gordon equation · Dirac equation · Lévy–Leblond
equation

1 Introduction

Harmonic oscillators belong to the most important and most
commonly used physical models. Due to the formal sim-
plicity, they are used as most basic pedagogical examples of
exactly solvable quantum mechanical problems. The Hooke
force is used to model a wide variety of phenomena rang-
ing from molecular vibrations to the behaviour of quantised
fields. The Schrödinger equation for an electron in a uniform
magnetic field confined by a harmonic oscillator type poten-
tial was solved in 1928 by Fock [1] and 2 years later again by
Darwin [2]. Though the non-relativistic harmonic oscillator
seems to be well understood, there are many recent studies
dealing with this subject. Among them one should mention
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a paper on symplectic models of n-particle systems confined
in a harmonic oscillator potential [3] and another one on
rotation–vibration spectra of diatomic molecules [4]. Har-
monic oscillator potentials may be used to describe spatial
confinement of quantum objects, as for example the effects
of the embedding of particles in nano-cavities, in fullerenes,
in liquid helium. A discussion of these issues and more ref-
erences to the literature may be found in [5,6].

A relativistic generalisation of harmonic oscillator is far
from being trivial and is certainly not unique. In particular,
the mode of a generalisation depends upon the definition of
the relativistic oscillator. Already in early 1930s Nikolsky
[7] and Postȩpska [8] were concerned with a Dirac equa-
tion for an electron in the field of a quadratic potential. The
resulting eigenvalue problem reduces to a quartic equation
with no bound solutions. The non-relativistic discrete energy
levels correspond in this oscillator to resonances. Relativis-
tic systems which have an infinite number of bound states
whose energy levels are all equally spaced have recently been
discussed by Toyama and Nogami [9]. Such a system has
been constructed using the inverse scattering method [9,10].
Another approach, leading to the so-called Dirac oscillator,
is based on a construction of the Dirac equation which is
exactly solvable and in the non-relativistic limit gives the
Schrödinger harmonic oscillator equation [11–15].

The Schrödinger equation for two unconfined interact-
ing particles may always be reduced to a system of two
one-particle equations: one for the relative motion of the
particles and another for the motion of the centre of mass.
Among textbook examples the best known are the hydrogen
atom and the nuclear motion in the diatomic molecule. In
general, this separation is impossible if the motion of the
particles is confined by an external potential (e.g., two inter-
acting electrons confined by a Coulomb potential modelling
a helium-like atom). The only confinement which does not
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obstruct the separability is the one by a parabolic potential.
The best known system of this kind is referred to as the Hook
atom or harmonium. Probably the first studies on this system,
aimed at an exact description of the wavefunction near the
electron correlation cusp, were due to Kestner and Sinanoğlu
[16] and to Santos [17], who found the analytical solutions
to the problem. During the next decades harmonium [18–
21] and related systems [22,23] were studied in a variety of
contexts including very interesting and non-trivial generali-
sations to the case of three confined particles [24].

Two simple properties of the quadratic forms: (1) a linear
combination of quadratic forms is a quadratic form, and (2)
a linear transformation of the variables transforms a positive
definite quadratic form to the diagonal form with positive
coefficients, imply that a Hookean molecule can be reduced
to a problem similar to harmonium. An ingenious implemen-
tation of these properties resulted in exactly solvable models
of molecules [24–28], giving a possibility of a precise anal-
ysis of the Born–Oppenheimer approximation.

In this paper we are concerned with relativistic gener-
alisations of harmonic oscillator and with the influence of
spin on the spectrum of a particle confined by a harmonic
oscillator potential. The non-relativistic harmonic oscillator
is the only quantum system which is invariant with respect
to a canonical transformation interchanging coordinates and
momenta, i.e., its eigenvalue problem looks the same in the
coordinate and in the momentum representation. We take
this feature as the definition of harmonic oscillator. Thus, we
are looking for relativistic oscillators which are described
by the same Hamiltonian in both coordinate and momentum
representations. We discuss a spin 0 particle described by
the Klein–Gordon equation and, in the non-relativistic limit,
by the Schrödinger equation as well as a spin 1/2 particle
described by the Dirac equation and, in the non-relativistic
limit by the Lévy–Leblond equation [29].

This paper has been dedicated to the memory of Professor
Serafín Fraga. Between 1972 and 1976 JK spent more than
2 years in his group in Edmonton. First as a Postdoctoral
Fellow and then as a Research Associate. I am most grateful
to my Teacher and Friend, for passing to me his appreciation
for simplicity in mathematical modelling of science. Also in
this paper I try to follow his advice and retain simplicity of
the formulation.

Atomic units are used in this paper, however, the mass µ
of the particle is explicitly given in all equations.

2 Formulation of the problem

Let us assume that a particle moves in an external field
described by a stationary model potential Aν = {V,A}. Its
first component, A0 ≡ V, not quite correctly but customar-
ily, is referred to in this paper as the scalar potential (this

cannot bring any confusion since we shall not be concerned
with a potential which is scalar under the Lorentz trans-
formation). The remaining three components of Aν form a
three-dimensional vector A, which we shall refer to as the
vector potential. The model potential has to be of neither
electromagnetic origin nor Hermitian, though the resulting
Hamiltonian has to be Hermitian.

If the particle is spinless, it is described by the Klein–
Gordon equation[

HS − 1

2µc2 (V − E)2
]
ΨK = EΨK, (1)

where

HS = 1

2µ
(p − A)†(p − A)+ V, (2)

c ≈ 137 is the velocity of light, E is the energy relative
to µc2 and other symbols have their usual meaning. In the
nonrelativistic limit the Klein–Gordon equation transforms
to the Schrödinger equation

HSΨS = EΨS. (3)

A spin- 1
2 particle is described by the Dirac equation which,

in the standard (Dirac–Pauli) representation, reads(
(V − E)I, (p − A)†σ
σ (p − A),

[
(V − E)/c2 − 2µ

]
I

) (
Ψ l

D
cΨ s

D

)
= 0, (4)

where I is a 2 × 2 unit matrix, σ are the Pauli spin matrices
and Ψ l

D/Ψ s
D are traditionally called the large/small compo-

nents of the wavefunction. The non-relativistic limit of Eq.
(4)(
(V − E)I, (p − A)†σ
σ (p − A), −2µI

) (
Ψ l

L
Ψ s

L

)
= 0 (5)

is known as the Lévy–Leblond equation [29]. The elimina-
tion of Ψ s

L from Eq. (5) gives[
HSI − σ

2µ
[(∇ × A)+ M]

}
Ψ l

L = EΨ l
L, (6)

where

M =
(

A† − A
)

× ∇ − i
(

A† × A
)

(7)

and Ψ l
L is the two-component Pauli spinor. If A is Hermitian

then M = 0 and Eq. (6) takes the standard form of the nonrel-
ativistic Schrödinger–Pauli equation. Let us note that Eq. (6)
rather than Eq. (3) should be interpreted as the non-relativistic
limit of the Dirac equation.

In this paper we are concerned with a comparative study
on solutions of Eqs. (1)–(6) in which the model potentials
V and A are selected in such a way that in the non-relativ-
istic limit they describe harmonic oscillators. In particular
we compare spectra of bosonic (i.e., either Schrödinger or
Klein–Gordon) and fermionic (i.e., either Lévy–Leblond or
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Dirac) oscillators and point out the differences which already
appear in the case of a single particle.

3 Harmonic oscillator

The Schrödinger equation describing a spinless particle con-
fined by a harmonic oscillator potential is usually written in
the form
(

p2

2µ
+ µω2

2
r2

)
ΨS = E ΨS. (8)

Equation (8) corresponds to two different sets of potentials
defining the Hamiltonian (2):

V = µω2

2
r2, A = 0, (9)

and

V = 3ω

2
, A = iµω r. (10)

Though the first option is more intuitive (explicitly describes
a Hooke system), the second one has many formal advantages
and allows for a deeper understanding of not only harmonic
oscillator itself, but also the structure of the quantum theory.1

In the second option (10), by introducing operators

a = i√
2µω

(p − A) = 1√
2µω

(µωr + ip),

a† = − i√
2µω

(p − A)† = 1√
2µω

(µωr − ip) (11)

we get
[
a j ,a

†
k

]
= δ jk, (12)

and Eq. (8) may be rewritten as
(

a†a + 3

2

)
ΨS = E

ω
ΨS. (13)

The next step is the observation that a† and a act as ladder
operators and may be used to generate the Hamiltonian spec-
trum in a simple algebraic way. The products of a†

j ak form
SU (3) algebra and the Hamiltonian is its element. The further
development leads to the construction of the number repre-
sentation, second quantisation and quantum electrodynam-
ics.

1 It may be tempting to expect that the potentials (9) and (10) are related
by a gauge transformation. This is not the case. More than that, none of
them corresponds to a realistic external electromagnetic field. However,
it is easy to see that the option given by (10) defines the superpotential
corresponding to (9) [30].

4 Relativistic oscillators

The substitutions (9) and (10) are equivalent as long as we
are concerned with the Schrödinger Hamiltonian (2). As one
can easily see they are by far non-equivalent in the context
of relativistic generalisations of the harmonic oscillator.

The relativistic counterpart of the Schrödinger equation,
i.e., the Klein–Gordon equation (1), upon the substitution
(9), becomes
(

p2

2µ
+ µω2

2
r2 − λ r4

)
ΨK = ε ΨK = 0, (14)

where ε = E(1 + E/2µc2), ω = ω
√

1 + E/µc2, and λ =
µω4/8c2. The effective radial potential in Eq. (14)

VK(r) = µω2

2
r2 − λ r4 (15)

has nodes at r = 0 and at r = √
2rmax, a maximum equal to

Vmax = µ2ω4/16λ at rmax = ±ω√
µ/2

√
λ and a minimum

Vmin = 0 at rmin = 0. The potential is energy dependent. Its
maximum grows up with increasing energy in such a way that
there are no continuum eigenstates (no energies higher than
the maximum of the potential). However, there are no station-
ary, square-integrable, states either. All states are metastable
and the particle may dissociate to the continuum tunnelling
through the finite potential barrier. Three effective potentials
VK(r) corresponding to E = qµc2 with q = 0, 1

4 ,
1
2 are dis-

played in Fig. 1. For comparison the corresponding energy
levels and the parabolic approximations are also shown. In a
similar way one may also obtain the Dirac equation. It also
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Fig. 1 Effective quartic oscillator potentials (solid lines) appearing in
the Klein–Gordon equation with the Hooke-law electrostatic potentials
V (broken lines) corresponding to E = qµc2 for q = 0, 1/4, 1/2. For
comparison the corresponding energy levels and the parabolic approx-
imations for q = 1/4 and q = 1/2 are also given
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may be expressed as a rather complicated quartic oscillator
equation with no square-integrable solutions. We conclude
that the properties of the model obtained as a result of this
mode of relativistic generalisation does not meet our expec-
tations.

By an inspection of the Klein–Gordon (1), Dirac (4) and
Lévy–Leblond (5) equations we can see that in all cases the
substitution given by Eq. (10) results in equations which are
invariant under the transformation

p ↔ ar (16)

where a is a constant. The invariance is obvious in the case
of Eq. (1). Equations (4) and (5) are also invariant because
∇ × A = 0 and

M = 2iµω[a† × a] = 2µωL, (17)

where L = r × p is the orbital angular momentum.
It is very important that all operators appearing in the

equations resulting from the substitution (10) are expressible
in terms of linear combinations of a†

j ak . Then, they belong to
SU (3) algebra and, consequently, the corresponding eigen-
value problems are exactly solvable and the spectra may be
generated using appropriate ladder operators.

Another option leading to equations invariant with respect
to the transformation (16) and, thus, exactly solvable is

V = 0, A = 1

2
[B × r] , (18)

where B = ∇×A may be interpreted as the external magnetic
field. This option is valid for two-dimensional problems only.
In this case M = 0 and, assuming B = {0, 0,B},

(p − A)2 = p2 + 1

4
B2ρ2 − (BL), (19)

where ρ2 = x2
1 + x2

2 .
By solving a simple inverse problem one can find an effec-

tive potential which introduced to either Klein–Gordon or
Dirac equation results in an equation invariant with respect
to the transformation (16) also for V not equal to a con-
stant. Regretfully, such an effective potential has to be energy
dependent. In the case of the Klein–Gordon equation it reads:

VE = V0

[(
1 +

√
1 − 2V0

µc2(1 + δ)2

)
(1 + δ)/2

]−1

, (20)

where V0 = µω2r2/2 and δ = E/2µc2. The potential is real
in a finite range of r [forωr ≤ c(1+δ)]. In the non-relativistic
limit VE = V0 and in the first-order approximation

VE = V0

(
1 + V0 − 2E

2µc2

)
+ O(α4), (21)

where α ≈ 1/137 is the fine-structure constant. It seems,
however, that this mode of the relativistic generalisation is of
some rather limited interest.

4.1 Spin 0

In the case described by Eq. (10) both Schrödinger and Klein–
Gordon equations may be written as

(
p2

2µ
+ µω2

2
r2

)
Ψ = εn	Ψ, (22)

where

ε0
n	 =

{
En	, (Schrödinger),
En	(1 + En	/2µc2), (Klein–Gordon).

(23)

As it is well known, ε0
n	 = (2n + 	 + 3

2 )ω. Then, in the
Schrödinger case

En	 ≡ ES
n	 = (2n + 	+ 3

2 )ω, (24)

and in the Klein–Gordon one

En	 ≡ EK
n	 = µc2

⎡
⎣−1 ±

√
1 + 2ES

n	

µc2

⎤
⎦ (25)

=
{

ES
n	 − ES

n	
2
/(2µc2)+ O(α4),

−2µc2− ES
n	 + ES

n	
2
/(2µc2)+ O(α4).

Hence, the Klein–Gordon spectrum is composed of two
sequences of discrete energy levels separated by the 2µc2

gap. The negative energy part of the spectrum is the mirror
image of the positive one. Contrary to the non-relativistic
case the energy levels are not equally spaced (though the
eigenvalues ε are). The distance between two consecutive
levels is equal to

EK
N+1 − EK

N = ω − 2(N + 2)
ω2

2µc2 + O(α4), (26)

where N = 2n + 	. Then, it is always smaller than in the
Schrödinger case and decreases with increasing energy.

Also in the case of axial oscillators corresponding to the
potential defined in Eq. (18) both Schrödinger and Klein–
Gordon equation reads

[
p2

2µ
+ µω2

2
ρ2 − ξ Lz

]
Ψ = εnm Ψ, (27)

where z ≡ x3, ξ= B/2µ and εnm is related to the Schrödinger
and to the Klein–Gordon energies in the same way as in
Eq. (23). The Hamiltonian in Eq. (27) commutes with Lz .
Therefore its eigenfunctions may be expressed as

Ψ (ρ, φ) = ψnm(ρ)Φm(φ) (28)

with LzΦm = mΦm and

εnm = (2n + |m| + 1) ω + m ξ. (29)
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4.2 Spin 1/2

A spin 1/2 particle is described by the Dirac equation and,
in the non-relativistic limit, by the Lévy–Leblond equation.
Upon the substitution (10) both equations may be separated
to the large- and small-component equations. The equation
for the large component of the wavefunction reads
[(

p2

2µ
+ µω2

2
r2

)
I − ω (σL)

]
Ψ l = ε

1/2
n	jΨ

l. (30)

The relation between the eigenvalue ε1/2
n	j and the energy is

the same as in Eq. (23) except that “Schrödinger” has to
be replaced by “Lévy–Leblond” and “Klein–Gordon” by
“Dirac”. The angular and spinor parts of the large compo-
nent may easily be obtained from the requirement that it is
an eigenfunction of the angular momentum operators J2, L2

and S2. Since

(σL) = 2(SL) = J2 − L2 − S2, (31)

where S = 1
2σ is the spin operator, and J = L + S, the

scalar product (σL) in the radial equation may be replaced
by the corresponding eigenvalue [ j ( j +1)−	(	+1)−3/4]I
matrix. Consequently, the radial part of the spinor describ-
ing the large component of the wavefunction is equal to the
appropriate eigenfunction of the spherical harmonic oscilla-
tor. The small components of the Dirac bi-spinor may easily
be obtained from the original Dirac equation.

The eigenvalues are equal to

ε
1/2
n	j =

{
ε

1/2
n	+ = (2n + 3

2 )ω, if j = 	+ 1
2 ,

ε
1/2
n	− = (2n + 2	+ 5

2 )ω, if j = 	− 1
2 .

(32)

The spectrum is highly degenerate. If j = 	 + 1
2 then the

energies are 	-independent, i.e., each energy level is infinitely
degenerate. The second branch of the spectrum correspond-
ing to j = 	− 1

2 is structurally similar to S = 0 case. Several
simple relations between S = 0 and S = 1/2 eigenvalues
are worth noticing: ε1/2

n	+ = ε0
n	 − 	, ε1/2

n	− = ε0
n	 + 	+ 1 and

ε0
n	 = (	+ 1)ε1/2

n	+ + 	ε
1/2
n	−

2	+ 1
. (33)

It is interesting to note that each degenerate multiplet ε0
N ,

where N = 2n+	, due to the spin-orbit splitting, contributes
one eigenvalue to the infinitely degenerate ground state ε1/2

0	+;
each but the lowest two degenerate multiplets ε0

N contribute
one eigenvalue to ε1/2

1	+, etc.

5 Spin-orbit interaction in non-relativistic oscillators

In the cases of non-relativistic oscillators (Schrödinger and
Lévy–Leblond) the equations which are invariant with respect

to the transformation (16) may also be obtained if

V = kvr2 + 3ka

2µ
, A = ikar, (34)

where ka and kv are positive constants. In the case of S = 0,
Eq. (22) remains valid with

ω = 1

µ

√
k2

a + 2µkv. (35)

In the case of S = 1/2, the corresponding Lévy–Leblond
equation reads
(

p2

2µ
+ µω2

2
r2 − ξσL

)
Ψ l

L = EL
n	j Ψ

l
L, (36)

where ξ = ka/µ and ω is given by Eq. (35). The energies of
a particle described by Eq. (36) are equal to

EL
n	j = (

2n + 	+ 3
2

)
ω +

{− (
	+ 3

2

)
ξ, if j = 	+ 1

2 ,

+ (
	− 1

2

)
ξ, if j = 	− 1

2 .

(37)

If ξ � ω, the last equation describes the spectrum of the
Schrödinger spherical harmonic oscillator perturbed by the
spin-orbit splitting with the spin-orbit parameter equal to ξ .
The spectrum may be viewed as a set of towers of equally
spaced energy levels. Several lowest energies are shown in
Table 1. As one can see, the degeneracy of the energy lev-
els related to the symmetries of the spherical oscillator for
a spinless particle has been removed (unless there are some
specific relations between ω and ξ ). A diagram represent-
ing the lowest energy levels in the spectrum of the spherical
Lévy–Leblond harmonic oscillator is shown in Table 2. A
comparison of the boson and fermion harmonic oscillator
spectra is given in Fig. 2.

Table 1 Expression 2EL
n	j = (

Nωω + Nξ ξ
)
/2 for the energy levels

of the Lévy–Leblond harmonic oscillator

n s1/2 p3/2 d5/2 p1/2 d3/2 f5/2

0 3ω − 3ξ 5ω − 5ξ 7ω − 7ξ 5ω + ξ 7ω + 3ξ 9ω + 5ξ

1 7ω − 3ξ 9ω − 5ξ 11ω − 7ξ 9ω + ξ 11ω + 3ξ 13ω + 5ξ

2 11ω − 3ξ 13ω − 5ξ 15ω − 7ξ 13ω + ξ 15ω + 3ξ 17ω + 5ξ

Table 2 Lowest energy levels EL
n	j = (

ω Nω + ξ Nξ
)
/2 in the spec-

trum of the Lévy–Leblond harmonic oscillator

Nω Nξ −11 −9 −7 −5 −3 +1 +3 +5 +7

3 1s1/2

5 1p3/2 1p1/2

7 1d5/2 2s1/2 1d3/2

9 1 f7/2 2p3/2 2p1/2 1 f5/2

11 1g9/2 2d5/2 3s1/2 2d3/2 1g7/2
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Fig. 2 A comparison between
spectra of non-relativistic
spherical harmonic oscillator for
spin 0 (thick lines) and for spin
1/2 (thin lines)

hfsf d dh
11/2 9/2 7/2 5/2 3/2 1/2 1/2 5/2 7/2 9/23/2

g p p gΕ(ω)

3/2

5/2

7/2

9/2

11/2

13/2

A general Schrödinger harmonic oscillator in which V =
kρv ρ2+kz

vz2 and A = 1
2 [B×r], is described by a cylindrically

symmetric Schrödinger equation
[

p2

2µ
+ µ

2

(
ω2
ρρ

2 + ω2
z z2

)
− ξ Lz

]
Ψ S = ES

n1n2mΨ
S (38)

where

ωρ = 1

µ

√
k2

a + 2µkρv , (39)

ξ = ka/µ = B/(2µ) and

ωz =
√

2kz
v

µ
. (40)

Equation (38) may be separated to two harmonic oscillator
equations (a two-dimensional one with frequency ωρ and
a one-dimensional one with frequency ωz). The resulting
energy is equal to

ES
n1n2m = (2n1 + |m| + 1) ωρ + (

n2 + 1
2

)
ωz + m ξ, (41)

n1, n2 = 0, 1, 2, . . .; m = 0,±1,±2, . . ..
Two special cases are of a particular interest. The first

one, described by the Hamiltonian of a spherically symmet-
ric oscillator with an additional term proportional to Lz , is
obtained by taking kz

v = kρv + k2
a/(2µ). The energy in this

case is equal to (2n + 	 + 3
2 )ωρ + mξ . The second one

corresponds to the case of V = 0. Then the movement of
the particle along z axis is unconstrained, and in the energy
expression (41)

(
n2 + 1

2

)
ωz is replaced by p2

z /(2µ), i.e.,

ES
n1 pzm = (2n1 + |m| + 1) ωρ + p2

z /2µ+ m ξ. (42)

The axial Lévy–Leblond equation reads
[

p2

2µ
+ µ

2

(
ω2
ρρ

2 + ω2
z z2

)
− ξ (Lz + σz)

]
ΨL = ELΨL.

(43)

Now the energy depends upon the projection of the spin on
the z axis:

EL ≡ EL
n1n2mms

= ES
n1n2m + 2ms ξ, (44)

where ms = ± 1
2 . Spectra of the axial oscillators are displayed

in Fig. 3.

6 Final remarks

In the case of the Schrödinger equation the external Hooke
law interactions may be derived from both vector and scalar
potentials. Using these potentials in equations which describe
non-relativistic fermions leads to a variety of exactly solv-
able harmonic-oscillator-type equations with spectra entirely
different to the ones given by the Schrödinger equation. Rel-
ativistic generalisations produce exactly solvable equations
only if V = const and the external fields are described by
properly defined vector potentials. The results of this paper
may be relevant not only in modelling quantum chemical
phenomena related to the Hooke law interactions in which
relativistic effects are important but also, probably first of
all, the phenomena in which the oscillating particles possess
spin. A description of the relativistic effects associated with
the spatial confinement is another area of physical utility
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S = 0 −1/2 1/2

l=0

l=1

l=0,2

l=1,3

m=0

m=0

m=1

m=−1

m=0

m=−1,1

m=−2,0,2

m=−3,−1,1,3

∆ 1

∆ 2

∆ 3

m=−2,0,2

m=−1,1

m=0

Fig. 3 Spectra of Schrödinger (S = 0) and Lévy–Leblond (S =
±1/2) axial oscillators. The values of splittings are equal to �1 = ωρ ,
�2 = ωz − ωρ and �3 = 2ξ

of this formalism. In particular, a relativistic generalisation
of the model of two spinless particles interacting by an in-
stantenous Coulomb potential and confined by the harmonic
oscillator potential, based on Eqs. (22) and (1) seems to be
straightforward.
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